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Abstract: In this study, we have developed an analytic model to analyze the influence of velocity slip parameter and heat 

source on magneto hydrodynamics (MHD) heat and mass transfer of a Jeffery fluid which conducts electricity on a stretching 

surface. Both temperature and concentration are assumed to be in power low form. The existing partial differential equations 

(PDEs) is changed into a structure of ordinary differential equations (ODE's) by using a similarity variable. For computing the 

transformed equation, we used an analytical method named as Optimal Homotopy Asymptotic Method (OHAM). The 

influence of different dimensionless parameters on the velocity, temperature, concentration and as well as the coefficient of 

skin friction, Nusselt number and Sherwood number were evaluated using graphs and tables. It is observed that the velocity 

slip parameter (k) and the Deborah number (β) have opposite effects on the velocity distributions of the fluid flow. However, 

the effects of heat source parameter (δ) and thermal radiation parameter (R) on the temperature profile is similar. To be 

confident about the accuracy of this analytic method, the values of Nusselt number (Mux) solved numerically is compared with 

the previously published works done before and the comparison is found to be in a very good agreement. 
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1. Introduction 

The flow of non-Newtonian fluid with magnetic field 

towards a stretching sheet has pulled in the attitude of many 

investigators for the last decades. Because this flow has many 

applications in the area of industry and manufacturing 

processes. Thermo-fluid problems are very much required for 

the production of glass fiber/plastic because these fluids are 

significant for the involvement of heat transfer between the 

surrounding fluid and sheet. Sheet process production begins 

by solidifying molten polymers as soon as it exists from the 

slit die. Immediately the sheet is solidified, it will be 

composed by a wind-up roll. The mechanical properties of 

the fiber/plastic sheet can be improved by extending rate of 

cooling and length of the sheet. The impression of boundary 

layer flow on a continuous solid sheet was launched by 

Sakiadis [1]. Later on, Crane [2] carried out his analysis on 

the mentioned kinds of flow for the case of a viscous fluid on 

a linearly stretching plane. Further, Crane's work have been 

extended by a number of investigators by considering 

different parameters, Dutta et al. [3], Gupta and Gupta [4], 

Chen and Char [5] were some of the researchers who 

extended it. 

Most of the studies considered previously are restricted to 

linear stretching of the sheet. But, it is compulsory to 

mention that the stretching need not essentially be linear. 

Salleh et al. [6] examined a steady boundary layer fluid flow 

and the behavior of heat transfer on a stretching sheet with 

Newtonian heating. Similarly, a two-dimensional steady 

MHD fluid flow on a shrinking sheet with suction effect was 

investigated by Babu et al. [7]. They observed that an 

increase of the Hartmann number, mass suction parameter, 

Schmidt number, and chemical reaction parameter makes to 

decrease the concentration profile. Akbar et al. [8] explored 

stagnation point flow in the two-dimensional flow of an 

incompressible nanofluid towards a stretching plane with 
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convective boundary condition. Recently, Rout et al. [9] 

analyzed an electrically conducting nanofluid due to a heated 

stretching sheet and the transfer properties of heat and mass. 

They obtained that, due to higher values of radiation the heat 

transport rate raises, however, Sherwood number decreases. 

Stagnation point flows on an MHD Prandtl fluid model due 

to a shrinking sheet was scrutinized by Akbar et al. [10]. 

Radiation effect of a water-based nanofluid flow on a 

boundary layer near a Stagnation point with variable 

viscosity due to a heated convective stretching sheet was 

observed by Makinde and Mishra [11]. Later on, a two-

dimensional MHD flow of nanofluids on a stretching plate by 

the cause of radiation, velocity, and thermal slip boundary 

conditions was investigated by Pal and Mandal [12]. A flow 

on a boundary layer and heat transport properties under the 

impact of slip velocity, Brownian motion, and thermal 

radiation were considered by Pal and Roy [13]. Their results 

have shown that the effect of slip velocity is to reduce the 

shear stress at the surface of the stretching sheet. 

Furthermore, an electrically conducting MHD flow of a 

nanofluid over a shrinking/stretching sheet was theoretically 

studied by Daniel et al. [14]. MHD viscous and heat transfer 

flow between two horizontal planes in a rotating system 

using HAM were analyzed by Sheikholeslam et al. [15]. 

All the studies examined by most researchers are restricted 

to Newtonian fluid flows. So, it is advisable to consider non-

Newtonian fluid flows in the next study. Since it is very 

significant for several industrial and engineering applications 

to the flexibility of fluid characteristics in nature. Jeffery 

model is the simplest types of the non-Newtonian fluid 

model that takes into account for rheological effects of 

viscoelastic fluids. Because a Jeffery model is a simple linear 

model comparing with other models using the time 

derivatives instead of convective derivatives. More recently, 

a steady laminar MHD flow of non-Newtonian viscoelastic 

fluid on a horizontal expanded plane was investigated by 

Gizachew and Shankar [16]. Their result indicated that the 

thermal boundary layer thickness raises when the size of the 

viscoelastic parameter and magnetic field parameter 

increases. Moreover, Narayana and Babu [17] examined the 

MHD flow of an electrically conducting Jeffery fluid due to a 

stretching sheet with an effect of heat sink/source and 

chemical reaction. Their analysis showed that  the Deborah 

number and Prandtl number has a similar effect on the 

Nusselt number. Recently, boundary layer flow of a mixed 

convection Jeffery fluid over a stretched sheet was studied by 

Ahmad and Ishak [18]. Further, the transfer properties of heat 

and mass of a Jeffery fluid with heat source/sink were 

investigated by Qasim [19]. The result obtained by him 

indicated that a Deborah number has an opposite effect on 

velocity and temperature distributions. The MHD flow of an 

electrically conducting Jeffery fluid near a stagnation point 

with the effect of partial slip, melting, and radiation on a 

stretched sheet was examined by Das et al. [20]. 

Furthermore, Jeffery fluid flow on a linearly stretching sheet 

with magnetic dipole effect was investigated by Zeeshan and 

Majeed [21]. More detailed studies on a Jeffery fluid model 

for different geometries are discussed in the following 

references [22–26]. 

Basically, this study concentrates to analyze different 

parameter effects on an MHD Jeffery fluid flow with heat 

source/sink and thermal radiation. For solving the governing 

problem after transformation, we used an analytic method 

named Optimal Homotopy Asymptotic Method (OHAM) 

which was developed by Marinca et al. [27]. The results 

obtained are shown by using graphs and tables. 

2. Mathematical Formulations 

In this study, we considered a steady two-dimensional 

incompressible, and electrically conducting Jeffery fluid flow 

over a linearly stretching sheet with the effect of velocity slip 

parameter, heat source, thermal radiation, and chemical 

reaction. In the physical model, the origin is fixed as it is 

shown in Figure 1.The flow model is located in the direction 

of � � axis and normal to the � � axis and this flow is 

produced by the exploit of two equal and opposite forces 

along the axis on a linear stretched sheet. In the way of flow, 

it is applied a consistent magnetic field of strength ��.  A 

fixed distance from the origin, the temperature and species 

concentration are considered to have power index  �	variations. 

 

Figure 1. Schematic diagram of the physical model and coordinate system. 

The required Jeffery fluid equation as it is developed by 

[23] can be written as 

	 
 ��� 
 � 

� 
 �� ��� 
 �� ������ 
 �. ����� 
The stress tensor of Cauchy, the dynamic viscosity, the 

Rivlin-Erickson tensor, the extra stress tensor are denoted by 	, � , ��, and	�  respectively, �  and ��  are the material 

parameters of Jeffery fluid. 

�� 
  ��! 
  ��!" 
Under the above assumptions, the governing equation of 

continuity, momentum, energy, and conservation of mass is 

defined in the following form as it is developed by [28–30]. 



36 Adamu Gizachew and Bandari Shankar:  Analytical Solutions of an MHD Heat and Mass Transfer of a Jeffery   

Fluid Flow over a Stretching Sheet with the Effect of Slip Velocity 

#$
#% 
 #&

#' 
 0                             (1) 

) #$
#% 
 * #$

#' 
 +
�,- .#/$

#'/ 
 �� 0) #1$
#%#'/ 
 * #1$

#'1 � #$
#%

#/$
#'/ 


#$
#'

#/$
#%#'23 � 456/

7 )                    (2) 

) #8
#% 
 * #8

#' 
 9:7;<
#/8
#'/ � �

7;<
#=>#' 
 ?

7;<  @ � @A!           (3) 

) #B
#% 
 * #B

#' 
 C #/B
#'/ � DE F � FA!              (4) 

Where ), *  are the velocity components in the �  and � 

directions, GH  is the kinematic viscosity, I  is the fluid 

density,	�� is the transverse magnetic field, J is the electrical 

conductivity of the fluid, �	 is the ratio of relaxation and 

retardation times, ��  is the relaxation time, @  is the 

temperature of the fluid, KH is the thermal conductivity of the 

fluid, LM is the specific heat, @A is the constant temperature of 

the fluid far away from the sheet, N is the chemical reaction 

parameter, C  is the diffusion coefficient, F	and FA  are the 

species concentration and far away from the wall 

respectively. 

The boundary conditions are 

) = OP �! + Q #$#', * = 0, @ = @P = @A + R� 0%S2T
, 

F = FP = FA + RU 0%S2T
, at � = 0 

) → 0, 
#$#' → 0, @ → @A, F → FA as � → ∞         (5) 

Where OP �! = L� is the velocity of the stretching sheet, L is the proportionality constant of the stretching velocity, R� 

is the constant that depends on the temperature of the fluid, @P is the temperature of the stretching sheet, � is the surface 

temperature parameter, X is the characteristic length, RU is the 

constant that depends on the concentration of the fluid and FP is the species concentration at the wall. 

To solve Eqs. (2)-(4), we introduce the following similarity 

transformations 

Y = Z ;+: �, ) = L�[\ Y!, * = −]LGH[ Y!, ^ Y! = 8_8̀8a_8̀ , 

b Y! = B_B`Ba_B`                               (6) 

By the Rosseland diffusion approximation, the radiative 

heat flux cd is given by 

cd = − e4∗g9∗ #8h#'                           (7) 

The mean absorption coefficient of Rosseland and the 

Stefan-Boltzmann constant are denoted by K∗ and J∗ respectively. By assuming the temperature differences 

within the flow are sufficiently small, so that @e  can be 

described as a linear function of temperature. @e ≈ 4@Ag − 3@Ae                                (8) 

Using (7) and (8) in equation (3), we obtain 

#=>#' = − �l4∗8̀ 1g9∗ #/8#'/                                (9) 

Applying the similarity variables, the governing Eqs.(2)-

(4) are transformed into the non-linear ordinary differential 

equationas follows: [\\\ +  1 + �! [[\\ − [′U! + Co [′′U − [[′′′′! −		 1 + �!p[\ = 0                    (10) 

01 + eqg 2 ^\\ + �E [^\ − �[\^ + r^! = 0       (11) 

b\\ + �L [b\ − �[\b − Nb! = 0        (12) 

With boundary conditions [ Y! = 0, [\ Y! = 1 + R[\\ Y!, ^ Y! = 1, b Y! = 1, at Y = 0, [\ Y! = 0, [\\ Y! = 0, ^ Y! = 0, b Y! = 0 as Y → ∞  (13) 

Where the governing parameters are defined as: Co =��L		is the Deborah number, p = 456/s7:  is the magnetic field 

parameter, �E = t;<9:  is the Prandtl number,	� = e4∗8̀ 19∗9:  is the 

radiation parameter, 	r = ?7;<; is the heat source/sink 

parameter, �L = &:u  is the Schmidt number, and N = vdw/+:  is 

the chemical reaction parameter. The concentration, 

temperature, and dimensionless	 velocity	 are	 represented	by	b, ^, and	[,	respectively,	Y  is the similarity variable and 

prime denotes its differentiation with respect to Y, R is the 

velocity slip parameter. 

The other quantities that are described on the study are 

coefficient of skin friction	FH, the heat transfer rate	�)%and 

the Sherwood number �ℎ%which are defined as: ���12F[ = 11+��[′′ 0!+Co[′′ 0!� ,
�)����−12 = −^′ 0! 01+ 4�3 2 ,�ℎ����−1/2 = −b′ 0! ���

��
                 (14) 

3. Solution by OHAM 

To solve the above equations, we apply the basic principles 

and procedures of OHAM as it was developed by [27]. Thus, 

using the above principles the resolution of Eqs. (10)-(12) 

with respect to the corresponding boundary conditions (13) 

can be obtained using Optimal Homotopy Asymptotic 

Method as: 
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When the embedding parameter� 
 0 and � 
 1 

� Y, 0! = �� Y!	and		� Y, 1! = � Y!              (16) 

Thus as � increases from 0 to 1, the solution varies from �� η! to � η!.	For	� = 0 we can write Q �� Y!! + � Y! = 0, � ��! = 0,         (17) 

The auxiliary equation H p! is chosen as: 

� �! 
 �F� 
 �UFU 
 �gFg 
 ⋯,         (18) 

Where C�, CU, Cg … are constants which we call them 

convergence control parameters. Equally, the auxiliary 

equations for the momentum, heat transfer and mass transfer 

may be written as of (17) as: �� �! = �F�� + �UF�U + ⋯�U �! = �FU� + �UFUU + ⋯�g �! = �Fg� + �UFgU + ⋯�                 (19) 

Expanding � η, p!  in series with respect to 	�  one can 

write: 

� Y, �, F!� = �� Y! + ∑ �9 Y, F�!�9 ,   = 1,2,3…9¡� 				 (20) 

Now following the method and substituting (19) in to (15) 

we can write: 

The Zero
th

 order as: ��: [′′� + [′� = 0[� 0! = �, [′� 0! = 1 + R[\\� 0!,^′� + ^� = 0^� 0! = 1,b′� + b� = 0b� 0! = 1, ���
��
��

                  (21) 

Based on the corresponding boundary conditions one can 

find the Zero
th

 order solution as 

[� Y! = £¤¥ _�,£¥!�,¦ ,^� Y! = �_§ ,b� Y! = �_§ ¨                   (22) 

In the same way, we can find the first and second order 

solutions too. Hence, solutions for the momentum, heat 

transfer, and mass transfer equation (up to second-order 

terms) are given by [ Y! = [� Y! + [� Y! + [U Y!^ Y! = ^� Y! + ^� Y! + ^U Y!b Y! = b� Y! + b� Y! + bU Y!�                  (23) 

On substituting the values of [ Y! , 	^ Y!	and b Y!  from 

(23) in to equations (10),(11) and (12), we can find residuals 

as �� Y, F��, 	F�U!, �U Y, 	FU�, 	FUU!	and	�g(Y, 	Fg�, 	FgU), afterwa

rd, we can obtain the Jacobians	©�, ©U,	and	©g as follows: 

©�(Y, F��, F�U) = ª ��
Us

� (Y, F��, F�U)«Y             (24) 

©U(Y, FU�, FUU) = ª �U
Us

� (Y, FU�, FUU)«Y            (25) 

©g(Y, Fg�, FgU) = ª �g
Us

� (Y, Fg�, FgU)«Y           (26) 

Where the residuals 

��(Y, F��, F�U) = [′′′ + (1 + �)([[′′ − [′U) + Co([′′U −
[[′′′′) − (1 + �)p[′, 

�U(Y, FU�, FUU) = 01 + eq
g 2 ^′′ + �E([^′ − �[′^ + r^), 

�g(Y, Fg�, FgU) = b′′ + �L([b′ − �[′b − Nb) 
In order to solve the optimal values of the parameters 

F��, F�U, FU�, FUU, Fg�, ¬­«	FgU,	 we apply, 

#®¯
#B¯¯

 = 
#®¯
#B¯/

= 0, 
#®/
#B/¯

= #®/
#B//

= 0, and #®1
#B1¯

= #®1
#B1/

= 0. 

Using these constants which we call it convergence control 

parameters, the approximate solution of the problem (to order 

m ) can be determined very easily. 

4. Results 

To study the flow model for the above coupled non-linear 

ordinary differential equations (10)-(12) an Optimal 

Homotopy Asymptotic Method has been employed. The 

obtained results are displayed through graphs figures. 2-16. 

To check how much this method is accurate, it is compared 

the rate of heat transfer with the results done by Narayana 

[17] and Chen [30] for different values of � and we got it in 

a good agreement as shown in Table 1. It is also watched that 

the raise of (Co)	enlarges the local Nusselt number. 

Table 1. Comparison of local Nusselt number −^\(0) for various values of 

m, when R = � = 0, Db = 0,M = r= 0.R = 0	and	�E = 1. 

° Chen[30] Narayana[17] Present 

0 0.58199 0.5820 0.585319 

1 - 1.0000 1.0000 

2 1.33334 1.3333 1.33334 

Figure. 2 and 3 demonstrate the influence of the Deborah 

number	(Co)	on the velocity and temperature profile in the 

presence of velocity slip parameter. The velocity profile of 

the fluid increases when the Deborah number(Co)	increases, 

since there is a direct proportionality between Deborah 

number (Co)  and the stretching sheet rate (Co = ��L) . 

Increasing(Co) results in a higher motion of the fluid in the 

boundary layer especially adjacent to the surface sheet. 
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However, the distribution of fluid temperature decreases 

when the Deborah number  Co!	increases. It is because  Co! 

is proportional to the retardation time, which increases with 

an increase of the retardation time. As a consequence, the 

thickness of thermal boundary layer becomes weak with an 

increase of the retardation time. 

 

Figure 2. Velocity profile for different values of Co. 

 

Figure 3. Temperature profile for differentvalues of 	Co. 

 

Figure 4. Velocity profile for different values of p. 

 

Figure 5. Temperature profile for different values of  p. 
Figures.4 and 5 display the magnetic field parameter  p! effect on the velocity and temperature profile. The 

magnetic field parameter  p! has opposite effects on the 

velocity and temperature profiles. Increasing the values of  p!decreases the velocity profile. It is because, a Lorentz 

force created due to the presence of magnetic field which 

arises by drag force. This force reduces the movement of the 

fluid. This shows that increasing  p!	increases the retarding 

force and accordingly the velocity lessens. In the case of 

temperature the increase of  p!  increases the temperature 

profile, physically the magnetic field retards the velocity 

profile which in turn induces the temperature field that 

results in an increase of the temperature profiles. Hence, to 

manage the flow characteristics the magnetic field can be 

used. The ratio of relaxation and retardation times �!	effect 

on the distribution of velocity is presented by figure 6. The 

result has shown that, the velocity profile decreases when  �!	increases. This indicates that, a rise in  �! decrease in 

fluid retardation time which results to stop the rushing of 

fluid motion. 

 

Figure 6. Velocity profile for different values of ¬. 
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Figure 7. Velocity profile for different values of		R. 
The pressure velocity slip parameter	 R! on the velocity 

field is illustrated in figure 7. It is distinguished that, this 

parameter has an opposing effect on the velocity profile of 

the fluid. Figure 8 portrays the impact of the Prandtl number  �E! on the circulation of temperature. From the figure, it is 

observed that increasing the values of  �E!  decreases the 

temperature profile. The main cause is that  �E! depends on 

the thermal diffusivity. Thus the weakness of thermal 

diffusivity is due to large Prandtl number for which the 

temperature to be lower and the thermal boundary layer 

thickness thinner. Figure 9 illustrates the influence of the heat 

sink parameter  r ± 0! on the temperature profile. The heat 

sink makes the temperature of the fluid to decrease. It is 

because, the energy contained in the boundary layer is 

absorbed by the heat sink, that makes the fluid temperature to 

decrease. 

 

Figure 8. Temperature profile for different values of 	�E. 

 

Figure 9. Temperature profile for different values of 	r. 

 

Figure 10. Temperature profile for different values of 	�. 

 

Figure 11. Concentration profile for different values of 	N. 

Radiation parameter  �!  effect on the distribution of 

temperature is demonstrated by figure 10. It is watched that 

the increase of the thermal radiation parameter  �! increases 

the temperature profile. Hence, it makes the cooling process 

to proceed at a faster rate. Figure 11 illustrates the influence 

of chemical reaction parameter  N!  on the concentration 
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profiles. It is indicated that an increase of  N! decreases the 

concentration profile, physically, increasing the chemical 

reaction parameter produces a decrease in the species of 

concentration and boundary layer thickness. 

The concentration profile due to an effect of Schmidt 

number  �L! is displayed by figure 12.The result has shown 

that, an increase in  �L!	decreases the concentration profile, 

physically,  �L! increases means the molecular diffusion 

decreases. Hence, the concentration of the species is higher 

for small values of  �L!	and lower for larger values of  �L!. 

Figure 13 displays the consequence of surface temperature 

parameter �!  on the concentration profile. The result has 

shown that, when the values of  �!  increases, the 

concentration profile decreases. This is because the fluid flow 

is caused by stretching of the sheet and the stretching sheet of 

concentration is greater than the free stretch concentration 

(i.e.FP ² FA). 

 

Figure 12. Concentration profile for different values of  Sc. 

 

Figure 13. Concentration profile for different values of 	�. 

 

Figure 14. Skin friction coefficient for different values of Co	&	�. 

 

Figure 15. Nusselt number for different values of Co	&	�. 

 

Figure 16. Sherwood number for different values of Co	&	�. 

The variation of coefficient of skin friction, Nusselt 

number, and Sherwood number for diverse values of  �! 

and	 Co!	is displayed in figures. 14, 15 and 16. The result 

has shown that, when �!	increases, the coefficient of skin 

friction increases, while the rate of heat transfer and 

Sherwood number decreases. And when the values of the 
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Deborah number  Co!  increases, the coefficient of skin 

friction decreases, the rate of heat transfer and Sherwood 

number increases. 

5. Discussions 

The endeavor of this analysis is to investigate an MHD 

fluid flow of steady, laminar two-dimensional heat and mass 

transport of a Jeffery fluid on a stretching sheet. The outcome 

of velocity slip on the fluid flow is incorporated. To compute 

the solutions of the governing problem it is applied an 

analytic method named optimal homotopy analysis method 

(OHAM). Therefore, for diverse values of the dimensionless 

parameters velocity profile, temperature profile, 

concentration profile and as well as the coefficient of skin 

friction, the heat transport rate and mass transport rate are 

evaluated. It is acquired that,the velocity slip parameter (K) 

and the Deborah number (β) have reverse impacts on the 

velocity distributions of the fluid flow. However, the effects 

of heat source parameter (δ) and thermal radiation parameter 

(�) on the temperature profile is similar. The accuracy of this 

analytic technique is checked by comparing the Nusselt 

number with the formerly published works and the results are 

found to be in excellent agreement. In addition, as to the 

author's knowledge, the study of slip velocity effect on an 

MHD Jeffery fluid flow and the transfer characteristics heat 

and mass is not enough. Especially, several problems were 

not solved analytically. Based on the above reasons, the study 

of this problem is very valid. 

6. Conclusions 

In this article, it is considered a steady, laminar, two-

dimensional MHD Jeffery fluid flow with heat source. The 

temperature and concentration are assumed to be in the form 

of power low and the problem is solved analytically. 

The results obtained in the study are summarized as 

follows: 

1) When the values of  Co! increases, the fluid velocity 

increases while the temperature profile decreases. 

2) Magnetic field parameter has an inverse effect on the 

velocity profile and temperature. The velocity profile 

decreases with an increase of  �!. 

3) The velocity profile reduces with an increase of slip 

velocity. 

4) The distribution of temperature decreases with an 

increase of  �E!  and increases with an increase of 

 �!and  r!. 
5) The effect of the Schmidt number and chemical 

reaction is to decrease the concentration profile. 

6) An increase in  �!  makes to decrease the 

concentration profile. 

7) The coefficient of skin friction increases with an 

increase of  �!  while the Nusselt number and 

Sherwood number decreases. 

8) The coefficient of skin friction decreases with an 

increase of  Co!  while the Nusselt number and 

Sherwood increases. 
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